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Global distribution of tropical cyclones
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Tropical cyclones impact low latitude coastlines globally and effect many
coastal communities.
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Global distribution of coral reefs THE UNIVERSITY OF
WESTERN
s AUSTRALIA

Many of the areas impacted by tropical cyclones also feature coral reefs (e.qg.
Hurricanes Dorian, Irma, Jose, Maria, Typhoon Haiyan).
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Reefs morphology varies considerably T sy o
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» Reefs range from being shore
attached to 10s of km from shore.

* Do lagoons offer additional
coastal protection?



Motivation: Tropical Cyclone Olwyn (March

2015)
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Tropical Cyclone Olwyn observations WESTERN
& AUSTRALIA

Cross-shore array of 5 pressure sensors/wave gauges deployed several
months before Cyclone Olwyn.
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What we were expecting WESTERN
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US Park Service



What we observed- very minimal beach WESTERN
change € 5 AUSTRALIA

Averaged along the beach,
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Why did the beach change so little? WESTERN

The fringing reef dissipated
the ~6 m offshore waves.

The lagoon is sufficiently
wide (~2.5 km) such that the
beach is mostly protected
from the offshore wave
conditions.

Observed beach erosion
mostly due to wind wave
growth within the lagoon, not
offshore waves.
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During the
cyclone both
wave height
and setup
increased
towards the
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Is there a rele_itionship between lagoon width S WESTERN
and cyclone impacts? “=# AUSTRALIA

Our results suggest that the available fetch within a lagoon onshore of a
fringing/barrier reef may be a determining factor in the observed coastal
impact from cyclones. Here “coastal impact” is defined as the total water level
at the shoreline.
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Observations: Needham et al. (2015) WESTERN
&€ 5 AUSTRALIA
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Methodology X‘{Eﬁﬁ'ﬁ

Use idealized numerical simulations to predict total water level (TWL)

across a range of lagoon widths.

 We combine phase-resolved (to get runup) and phase-averaged (to get
wind growth) model simulations.

« Focus on role of wind growth in the lagoon- most existing research has
on shore attached reefs (Pearson et al [2017]) or neglected wind growth.
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Methodology X‘{J‘ﬁiﬁﬁﬁﬁ

ldealized numerical simulations of reef profiles ranging from shore attached
(e.g. many Pacific islands) to barrier reefs with wide lagoons (Great Barrier
Reef) to determine how lagoons impact TWL at the coast.
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SWAN and SWASH models combined to

. N WESTERN
predict TWL %e# AUSTRALIA

1. SWASH (3D non-hydrostatic, 3 layers, 1 km alongshore domain) run over
entire profile to predict TWL in absence of wind growth.

2. SWAN (phase-averaged) run over entire profile (1D) to predict wind growth
of waves in the lagoon.

3. SWASH re-run (in 3D) using 1-D spectra from SWAN at offshore end of
beach.

4. Wind setup modeled using hydrostatic SWASH simulations.
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Total water level calculation WESTERN
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Total water level (TWL) calculated assuming linear superposition:

TWL = Ry +1

Rsig = \/Rzl + RZ,

N = MNs1 + Ns2 + Nwind

s1=SWASH over full profile
s2=SWASH forced by SWAN wind growth



Results

SWASH only simulations (no wind growth).
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Results

Including wind growth from SWAN.
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Results

TWL with all components
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Results
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TWL with all components

~50% of TWL due to setup from offshore waves in lagoon.
Assumes no lateral channels- worst case scenario
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Effect of channels on setup
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Reefs that include lagoons typically have channels that result in the wave
driven setup profile “tapering” toward the shore
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Methodology X‘{J‘ﬁiﬁﬁﬁﬁ

To account for lateral channels we place a “pump” in the lagoon that removes
the onshore mass flux across the reef.
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Results WESTERN
€ 5 AUSTRALIA

TWL with all components including pump.
« Assumes complete outflow of onshore mass flux- best case scenario
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Summary and conclusions e e O
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« Lagoons do have an impact on the coastal protection offered by reefs - but
this strongly depends on the lagoon width and presence of channels.

* Wind growth is important during extreme storms, but is not included in
existing models that can predict the 1G motions that dominate runup.
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